USE OF SALINE WATER IN NORTH WEST CHINA- A CASE STUDY-

A. <u>Tedeschi</u>; C.H. Huang; L. Zong, E. Riggi, G. Avola, M.G. Volpe, A. Basile; G. Mele; M. Malinconico; V. Aurilia; X. Xue; T. Wang

Wangtao@lzb.ac.cn ; Xianxue@lzb.ac.cn ; Anna.Tedeschi@cnr.it

¹⁾ISAFOM- Inst. for Agricultural and Forest Systems in the Mediterranean ³⁾ISA-Inst. of Food Science ²⁾Cold and Arid Regions Environmental and Engineering Research Institute

OUTLINE

- ➤ Introduction to the study area
- > Impacts of saline irrigation water on soil physical properties
- ➤ Results of a two-years irrigation trial with saline water
- Suggested improvements of the Mass Hoffman relationship.

Why is surface and groundwater saline?

Lower reach: mean annual precipitation $<150~\mathrm{mm}$ - mean annual evaporation 2000 to $2650~\mathrm{mm}.$

Population growth and water resources development							
Year	1949	1959	1972	1979	1985	1995	2000
Population (10 ⁶ people)	0.90	1.08	1.31	1.43	1.55	2.20	2.30
Irrigated area (103 ha)	134	154.7	206.7	245.3	272	302.7	7 304.5
Reservoirs	0	4	22	22	22	23	24
Reservoirs Storage (106 m3)	0	54	234	271	309	450	478
Groundwater extraction (109 m3)	0	0	0.476	0.895	1.03	1.16	1.43
		1949s	1960	s 197	'0s 1	980s	1990s
Groundwater recharge in Wuwei Basin		1.10	0.87	0.7	70	0.75	0.63
Groundwater recharge in Minqin Basin		0.48	0.33	0.2	28	0.17	0.12
Groundwater recharge in the who basin	ole river	1.58	1.20	0.9	98 0).92	0.75

		Water					
Element s	Unit	Cw _{0.35}	Gw _{0.8}	Gw ₂	Gw5	Gw ₁₂	
Ca ²⁺	mg l ⁻¹	47	87	126	280	533	
Mg^{2+}		11	44	192	190	448	
Na ⁺		23	52	229	1000	2178	
\mathbf{K}^+		5	5			18	
CO ₃ ² ·		0	0	14	0	0	
HCO ₃ -		143	296	307	360	301	
Cŀ		22	120	323	890	3455	
SO4 ²⁻		92	225	739	1640	3048	
TDS	g 1 ⁻¹	0.35	0.8	2.0	5.0	12.1	
ECw	dS m ⁻¹	0.46	1.00	2.6	7.03	18.8	

Impact of saline irrigation water on soil physical properties

Undisturbed soil samples taken at different depth to estimate: Water Retention Curve WRC Soil porosity by image analysis

Disturbed soil samples to evaluate the: Index aggregate stability (IC) in water

 $\begin{array}{l} \mbox{Measurements carried out on} \\ C_{0.8} = \mbox{soil irrigated with water at 0.8 g } L^{-1} = C \\ C_2 = \mbox{soil irrigated with water at 2 g } L^{-1} = S_1; \\ C_5 = \mbox{soil irrigated with water at 5 g } L^{-1} = S_2; \end{array}$

Parameter	Unit	С	S_1	S_2
Marketable fruit	t ha ⁻¹	37.82 a	32.71 b	26.55 c
Fruit	g	1980 a	1728 ab	1507 b
Harvest Index	-	0.64 c	0.69 b	0.75 a
Total soluble solid	°Brix	9. 07 b	11.03 a	11.62 a
Seed per fruit	N°	566 b	675 a	697 a
Fruit shape index	-	0.83 a	0.88 b	0.91 b
dry matter pulp/total dry matter	%	50.4 B	57.6 A	58.6 A
Dry matter peel/total dry mat.	%	39.6 a	32.1 b	31.3 b

Huang et al., 2012, Impact of saline water irrigation on yield and quality of melon (*Cucumis melo cv Huanghemi*) in northwest China. Europ. J. of Agron, 43; 68-76

Zong et al., 2011. Effect of different irrigation water salinities on some yield and quality components of field-grown two *Cucurbit* species. Turkish J of agriculture and forestry (Vol, 35, doi:10.3906/tar-0908-5)

Suggested improvements of the Mass-Hoffman relationship.

Current limitations:

- 1) Limited number of ECe measurements
- Use of the weighted average of ECe obtained by averaging the ECe of different soil layers
- No account is taken of preferential root water uptake from lower salinity soil layers
- 4) M&H model may be established using ECw instead of ECe
- Question: How does the M&H change if we evaluate it by considering the concentration of the soil solution and the water plant uptake ?

Letey et al. (2011) showed that plants do not respond to a linear average of soil root zone EC_e because they extract additional soil water from the less stressed portions of the root zone to compensate for reduced root water uptake in the stressed root zone.

Concluding Remarks

- Soil salinity and groundwater overdraft is threatening food security in the NW of China
- Irrigated agriculture is the largest consumer and polluter of river and groundwater
- Saline irrigation water has severe impacts on soil physical properties: the fraction of smaller pores increase in response to use of saline water
- The irrigation with saline water, S₁ if accompanied by leaching at sowing is still sustainable
- Irrigation with saline water, S₂ does not seem sustainable: in case of necessity, such S₂ water should be accompanied by leaching and applied to crop tolerant to salinity.
- The relationship between relative yield and salinity should be evaluated using a weighted average salinity of soil water to account for root water uptake in soil layers at different salinity

