ASSESSMENT OF CLIMATE CHANGE IMPACTS AND ADAPTATION MEASURES TO MALWATU OYA RIVER BASIN IN NORTH CENTRAL PROVINCE OF SRI LANKA

Eng T Janaki Meegastenna
Director of Irrigation (Water Management & Riverine Management
Irrigation Department, Sri Lanka
janakimeega@hotmail.com

Outline of the Presentation
• Malwatu Oya River Basin
• Flood and Drought in Malwatu Oya Basin
• Flood and Drought Risk Analysis of the Basin
• Proposed Interventions
• Conclusion

Malwathu Oya Basin Description
➢ Annual discharge to sea: 192 MCM
➢ Administrative Districts: 4 (Anuradhapura, Mannar, Vavuniya, Matale)

Malwatu Oya Basin - Major Reservoirs

Malwatu Oya Basin
• North Central, Northern and Central provinces
• Catchment area - 3,187 km²
• Main River - 164 km
• Second Largest River Basin
• Large no of Minor reservoirs - 1,450
• Average rainfall - 1,200 mm

Irrigation systems in Lower Basin

Thakham Anicut
Irrigable Area - 17,000 ha
No of Major tanks - 62
No of Minor tanks - 201
Middle Basin - Anuradhapura City

- The main land use change - historical conversion of lowland forest to agriculture and regrowth vegetation by shifting cultivation.
- Conversion to commercial agriculture.
- Main land use issues are related to the relatively heavy use of agrochemicals and the potential for nutrient accumulation.
- Lowering of the water table by dry season extraction.
- Results in water shortages in the Yala season and inland salinization.
- The main source for water supply in basin is groundwater.
- 2011 census, around 75% of people depend on groundwater from dug wells and tube wells.

Malwatu Oya Basin

- The main land use change - historical conversion of lowland forest to agriculture and regrowth vegetation by shifting cultivation.
- Conversion to commercial agriculture.
- Main land use issues are related to the relatively heavy use of agrochemicals and the potential for nutrient accumulation.
- Lowering of the water table by dry season extraction.
- Results in water shortages in the Yala season and inland salinization.
- The main source for water supply in basin is groundwater.
- 2011 census, around 75% of people depend on groundwater from dug wells and tube wells.

Flood & Drought in Malwatu Oya Basin

- Historically the Malwatu Oya basin has been subjected to droughts.

Historical Flood Level at Thekkam

- Lower annual cropping intensity
- Lower yields
- Increased crop insecurity
- Conflict among sectors

Agricultural Productivity of the basin
Flood & Drought Risk Analysis in the Malwatu Oya Basin

- Economic cost of climate change in the Malwatu Oya basin - calculation of Annual Average Damage (AAD).
- Damage values for the categories of economic assets - public infrastructure (roads, railways, flood embankments), agriculture, building fabric, building contents and vehicles.
- Flood hazard maps - powerful tool to assess the current and future risk of flooding.
- Used to support strategic policy decisions for prioritizing investment.

<table>
<thead>
<tr>
<th>Case</th>
<th>Climate Condition</th>
<th>Basin Condition</th>
<th>Flood Risk Annual Average Damage USD M</th>
<th>Drought Risk Annual Average Damage USD M</th>
<th>Total Annual Average Damage USD M</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>current</td>
<td>current</td>
<td>8.6</td>
<td>48</td>
<td>56.6</td>
</tr>
<tr>
<td>2</td>
<td>2040 – Pessimistic</td>
<td>current</td>
<td>10.8</td>
<td>60</td>
<td>90.8</td>
</tr>
<tr>
<td>3</td>
<td>2040 – Average</td>
<td>current</td>
<td>10.2</td>
<td>53</td>
<td>63.2</td>
</tr>
<tr>
<td>4</td>
<td>2040 – Optimistic</td>
<td>current</td>
<td>8.7</td>
<td>42</td>
<td>50.7</td>
</tr>
<tr>
<td>5</td>
<td>2040 – Pessimistic</td>
<td>with planned development</td>
<td>11.6</td>
<td>49</td>
<td>60.6</td>
</tr>
<tr>
<td>6</td>
<td>2040 – Average</td>
<td>with planned development</td>
<td>10.8</td>
<td>43</td>
<td>53.8</td>
</tr>
<tr>
<td>7</td>
<td>2040 – Optimistic</td>
<td>with planned development</td>
<td>9.3</td>
<td>35</td>
<td>44.3</td>
</tr>
</tbody>
</table>

Proposed Interventions

- Nachchaduwa Reservoir –
 - Increased spill gates discharge capacity into the Malwathu Oya.
 - Intervention comprises the replacement of the existing hydraulic gates with larger gates (wider and deeper gates with lower sill levels).
 - To maximize the potential to drawdown Nachchaduwa Reservoir prior to flood event.
 - Operational regime changes to include drawing down reservoir levels prior to large rainfall / storm events.

Conclusions

- Proposed interventions – need to tested at the feasibility stage.
- Optimizations – based on cost and benefits.
- Nachchaduwa reservoir operations can be further improved with the accurate quantitate rainfall forecast.
- Then, develop the reservoir operation rule curves.
- Technically and economically viable, and also the environmental and social impacts are low.